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INTEGRATED CALCULATION OF THE FUNCTION 

OF ONE VARIABLE 

 

1. Initial function and indefinite integral 

Definition. The function F (x) is called the initial function 

of f (x) over the interval [a; b] if F (x) is a differentiable 

function on [a; b] and F𝐹′(𝑥) = 𝑓(𝑥),    𝑥 ∈ [𝑎; 𝑏]. 

Theorem. If F1 (x) and F2 (x) are antiderivatives of f (x) in 

same interval [a; b], the difference between them is equal to 

a constant, called the constant of integration. 

Definition. If F (x) is an antiderivatives of the initial 

function f (x) over the interval [a; b] and C = const, then the 

expression F (x) + C is called the indefinite integral of the 

function f (x) on [a; b] and is denoted by the integral symbol 

∫ 𝑓(𝑥)𝑑𝑥. Thus, the integral symbol ∫ 𝑓(𝑥)𝑑𝑥 means each of 

many antiderivatives of a function f (x): ∫ 𝑓(𝑥)𝑑𝑥 = 𝐹(𝑥) + 𝐶, 

where the symbol ∫ is called an integral; the function f (x) – 

the integral function, or the integrand f (x) dx – an integral 

expression, x – an integral variable. 

Definition. The operation of finding the indefinite integral 

of a function is called the integration of this function. 
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From the point of view of geometry, the indefinite integral 

is a set of curves, each of which is called an integral curve 

and is formed by shifting one of them parallel to itself along 

the axis Oy. To extract a certain integral curve F (x) from this 

set, it suffices to set its value F0 (x) at some point 𝑥0 ∈ [𝑎; 𝑏]. 

2. Properties of Indefinite Integrals 

1. The derivative of the indefinite integral is equal to the 

integrand function: (∫ 𝑓(𝑥)𝑑𝑥)′ = 𝑓(𝑥). 

Indeed, if 𝐹′(𝑥) = 𝑓(𝑥), then 

(∫ 𝑓(𝑥)𝑑𝑥)′ = (𝐹(𝑥) + 𝐶)′ = 𝐹′(𝑥) = 𝑓(𝑥). 

2. The differential from the indefinite integral is equal to 

the integrand expression: 𝑑(∫ 𝑓(𝑥)𝑑𝑥) = 𝑓(𝑥)𝑑𝑥. 

Indeed, 

𝑑 ∫ 𝑓(𝑥)𝑑𝑥 = (∫ 𝑓(𝑥)𝑑𝑥)′𝑑𝑥 = 𝑓(𝑥)𝑑𝑥. 

3. The indefinite integral of the differential of a function is 

equal to the sum of this function and an arbitrary constant: 

∫ 𝑑 𝐹(𝑥) = 𝐹(𝑥) + 𝐶. 

4. A constant factor can be taken as the sign of the 

indefinite integral: ∫ 𝐶 𝑓(𝑥)𝑑𝑥 = 𝐶 ∫  𝑓(𝑥)𝑑𝑥. 
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5. The indefinite integral of the algebraic sum of two 

functions is equal to the algebraic sum of the integrals of 

these functions:  

∫  𝑓(𝑥) ± 𝑔(𝑥)𝑑𝑥 = ∫  𝑓(𝑥)𝑑𝑥 ± ∫ 𝑔(𝑥)𝑑𝑥. 

Property 5 is valid for an arbitrary finite number of terms. 

6. If ∫  𝑓(𝑥) = 𝐹(𝑥) + 𝐶 and u = φ (x) – an arbitrary 

function having a continuous derivative, then 

∫  𝑓(𝑢) = 𝐹(𝑢) + 𝐶. 

Property 6 (it is called the invariance of the integration 

formula) is very important. It means that one or another 

formula for an indefinite integral remains valid regardless of 

whether the integration variable is an independent variable or 

an arbitrary function of it with a continuous derivative. Thus, 

the number of calculated or, as they say, taken integrals 

increases indefinitely. 

Theorem. Every continuous function on the segment [a; b] 

has a primary function on this segment. 

In this regard, we will further assume that the integrable 

function is considered only on those segments where it is 

continuous. 
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3. Table of Integrals  

Let u (x) be an arbitrary function that has a continuous 

derivative 𝑢′(𝑥) on some interval. Then the following 

formulas are valid in this interval: 

1.  ∫ 𝑑𝑢 = 𝑢 + 𝐶. 

2.  ∫ 𝑢𝛼𝑑𝑢 =
𝑢𝛼+1

𝛼+1
+ 𝑐, 𝛼 ≠ −1. 

3.  ∫
𝑑𝑢

𝑢
= ln|𝑢| + 𝐶. 

4.   ∫ 𝑒𝑢𝑑𝑢 = 𝑒𝑢 + 𝐶. 

5.  ∫ 𝑎𝑢𝑑𝑢 =
𝑎𝑢

ln 𝑎
+ 𝑐, 𝑎 > 0, 𝛼 ≠ 1. 

6.  ∫ sin 𝑢 𝑑𝑢 = − cos 𝑢 + 𝐶. 

7.  ∫ cos 𝑢 𝑑𝑢 = sin 𝑢 + 𝐶. 

8.  ∫
𝑑𝑢

cos2 𝑢
= 𝑡𝑔 𝑢 + 𝐶. 

9.  ∫
𝑑𝑢

sin2 𝑢
= −𝑐𝑡𝑔 𝑢 + 𝐶. 

10. ∫
𝑑𝑢

1+𝑢2 = 𝑎𝑟𝑐𝑡𝑔 𝑢 + 𝐶. 

11. ∫
𝑑𝑢

√1−𝑢2
= 𝑎𝑟𝑐𝑠𝑖𝑛 𝑢 + 𝐶.t 

12. ∫
𝑑𝑢

𝑎2+𝑢2 =
1

𝑎
𝑎𝑟𝑐𝑡𝑔 

𝑢

𝑎
+ 𝐶. 
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13. ∫
𝑑𝑢

√𝑎2−𝑢2
= 𝑎𝑟𝑐𝑠𝑖𝑛 

𝑢

𝑎
+ 𝐶. 

14. ∫ 𝑡𝑔 𝑢 𝑑𝑢 = − ln|cos 𝑢| + 𝐶. 

15. ∫ 𝑐𝑡𝑔 𝑢 𝑑𝑢 = ln|sin 𝑢| + 𝐶. 

16. ∫
𝑑𝑢

𝑢2−𝑎2
=

1

2𝑎
ln |

𝑢−𝑎

𝑢+𝑎
| + 𝐶. 

17. ∫
𝑑𝑢

𝑎2−𝑢2
=

1

2𝑎
ln |

𝑎+𝑢

𝑎−𝑢
| + 𝐶. 

18. ∫
𝑑𝑢

√𝑢2+𝑎2
= ln|𝑢 + √𝑢2 + 𝑎2| + 𝐶. 

19. ∫
𝑑𝑢

√𝑢2−𝑎2
= ln|𝑢 + √𝑢2 − 𝑎2| + 𝐶. 

20. ∫
𝑑𝑢

sin 𝑢
= ln |𝑡𝑔 

𝑢

2
| + 𝐶. 

21. ∫
𝑑𝑢

cos 𝑢
= ln |𝑡𝑔 (

𝑢

2
+

𝜋

4
)| + 𝐶. 

22. ∫ 𝑠ℎ 𝑢 𝑑𝑢 = 𝑐ℎ 𝑢 + 𝐶. 

23. ∫ 𝑐ℎ 𝑢 𝑑𝑢 = 𝑠ℎ 𝑢 + 𝐶. 

24. ∫
𝑑𝑢

𝑐ℎ2𝑢
= 𝑡ℎ 𝑢 + 𝐶. 

25. ∫
𝑑𝑢

𝑠ℎ2𝑢
= −𝑐𝑡ℎ 𝑢 + 𝐶. 

26. ∫ 𝑡ℎ 𝑢 𝑑𝑢 = ln|𝑐ℎ 𝑢| + 𝐶. 

27. ∫ 𝑐𝑡ℎ 𝑢 𝑑𝑢 = ln|𝑠ℎ 𝑢| + 𝐶. 
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Integrals 1 – 27 are called tabular integrals. Part of these 

formulas follows directly from the definition of the indefinite 

integral, the table of derivatives and property 6 of the 

indefinite integral. 

The validity of other formulas is easy to check by 

differentiation. 

4. Basic Methods of Integration  

The main methods of integration are direct integration, the 

method of substitution (variable replacement) and the method 

of integration by parts. 

1. The method of direct integration is the calculation of 

integrals using the basic properties of the indefinite integral 

and the table of integrals. 

2. The substitution method (variable replacement) is to 

introduce a new integration variable. 

Suppose we need to find the integral ∫ 𝑓(𝑥)𝑑𝑥, and we 

cannot directly pick up the original for f (x), but we know that 

it exists. 

We introduce the replacement of a variable: x = φ (t), 

where φ (t) – a continuously differential function for which 

there is an inverse function. Then the equality is true: 
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∫ 𝑓(𝑥)𝑑𝑥 = 𝑓(𝜑(𝑡) ∙ 𝜑′(𝑡)𝑑𝑡 (1) 

(here it is implied that after integration in the right part of 

equality (1) instead of the variable t we will substitute its 

expression through x, found from replacement x = φ (t)). 

3. Now, consider the method of integration by parts. 

Let functions u = u (x) and v = v (x) have continuous 

derivatives on some interval. Then  

𝑑(𝑢 ∙ 𝑣) = 𝑢 ∙ 𝑑𝑣 + 𝑣 ∙ 𝑑𝑢. 

By integrating both parts, we have 

𝑢 ∙ 𝑣 = ∫ 𝑢 ∙ 𝑑𝑣 + ∫ 𝑣 ∙ 𝑑𝑢 

or 

∫ 𝑢 𝑑𝑣 = 𝑢 ∙ 𝑣 − ∫ 𝑣𝑑𝑢. (2) 

Formula (2) is called the formula for integrating parts. 
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DEFINITE INTEGRAL 

 

5. Definite Integral. Conditions for Existence of Definite 

Integrals 

Definition 1. The number I is called the limit of the integral 

sum 𝜎 = ∑ 𝑓(𝐶𝑘)∆𝑥𝑘
𝑛−1
𝑘=0  for λ (T) → 0 if for any ε > 0, there 

exists a number δ > 0 that as soon as λ (T) < δ, then for any 

selection of points Ck and any T – partition of the segment 

[a; b], the inequality |σ – i| < ε is true. 

In fact the number I is the limit of the integral sum σ and 

is written as follows: 

𝐼 = lim
𝜆(𝑇)→0

∑ 𝑓(𝐶𝑘)∆𝑥𝑘
𝑛−1
𝑘=0 . (3) 

Definition 2. The boundary of an integral sum, if it exists, 

is called the definite integral of the function f (x) on the 

segment [a; b] and is denoted 

𝐼 = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
. (4) 

The number a is called the lower limit of integration, b – 

the upper limit; f (x) is called an integrable function; f (x) dx 

– integrable expression; segment [a; b] – the interval of 

integration. 
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If the boundary of the integral sum, or the definite integral 

of the function y = f (x), exists, then such a function is called 

the function integrated on the segment [a; b]. 

Theorem. Any function continuous on the segment [a; b] 

integrates on this segment. 

6. Properties of Definite Integrals 

We formulate and prove the properties of a definite 

integral for a continuous function. 

1. Let the function f (x) be given and continuous on the 

interval [a; b], a < b. Then there is a definite integral 

∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎

 

and the equality  

∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎

= − ∫ 𝑓(𝑥)𝑑𝑥

𝑎

𝑏

 

is true. 

2. For any function y = f (x), 

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
= 0. 
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3. There is an integral ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
, where C is an arbitrary 

constant, and the equality 

∫ 𝐶𝑓(𝑥)𝑑𝑥

𝑏

𝑎

= 𝐶 ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎

 

is true. 

Property 3 is formulated as follows: A constant factor can 

be taken as the sign of a definite integral. 

4. On the segment [a; b] continuous functions f (x) and 

φ (x) are given. Then there is an integral 

∫(𝑓(𝑥) + 𝜑(𝑥))𝑑𝑥

𝑏

𝑎

 

and the equality  

∫(𝑓(𝑥) + 𝜑(𝑥))𝑑𝑥

𝑏

𝑎

= ∫ 𝑓(𝑥)𝑑𝑥 + ∫ 𝜑(𝑥)𝑑𝑥

𝑏

𝑎

𝑏

𝑎

 

is satisfied. 

Property 4 is formulated as follows: The definite integral 

of the sum of a function is equal to the sum of the definite 

integrals of these functions. 
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IMPROPER INTEGRALS 

 

7. Improper Integrals with Infinite Boundaries 

Earlier, we considered a definite integral on a finite 

segment [a; b]. However, in a number of problems it is 

necessary to consider the integral at infinite intervals 

[a; + ∞], [– ∞; b], [– ∞; + ∞]. It is clear that the notion of a 

definite integral cannot be directly applied to these cases. You 

can't even plot an integral sum. Therefore, it is necessary to 

look for other methods and to enter new definitions of the 

definite integral in each of these cases. 

Therefore, let the function f (x) be defined, for example, 

on the interval [a; + ∞], being continuous on any segment 

[a; b] where b > a is an arbitrary real number. Then there is a 

definite integral 

∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎

 

and it is a function of the upper limit (a is a constant number): 

𝐹(𝑏) = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
. 
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Definition 1. If there is a finite integral boundary 

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 for b → + ∞, then this boundary is called the 

integral f (x) from a to + ∞ and is written as 

∫ 𝑓(𝑥)𝑑𝑥
+∞

𝑎
= lim

𝑏→+∞
∫ 𝑓(𝑥)𝑑𝑥

𝑏

0
. (4) 

In this case, the integral ∫ 𝑓(𝑥)𝑑𝑥
+∞

0
  is called convergent, 

and the function  f (x) itself is called integrated on the interval 

[a; + ∞]. If the boundary (4) is an improper number (+ ∞ 

or  ∞) or does not exist at all, then the integral ∫ 𝑓(𝑥)𝑑𝑥
∞

𝑎
 is 

called divergent. 

The improper integral is similarly denoted as ∫ 𝑓(𝑥)𝑑𝑥
𝑏

−∞
. 

Let the function  f (x) be defined on the interval [–∞; b] 

and continuous on any segment [a; b], where a is an arbitrary 

real number and a < b. Then the definite integral ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 

is a function of the lower bound 𝛷(𝑎) = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
. 

Definition 2. If there is a finite boundary of the integral 

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 (function Ф (a)) for a → – ∞, then this boundary 

is called the integral of the function f (x) from – ∞ to a and is 

written as 

∫ 𝑓(𝑥)𝑑𝑥
𝑏

−∞
= lim

𝑎→+∞
∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎
. (5) 
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There, the integral ∫ 𝑓(𝑥)𝑑𝑥
𝑏

−∞
 is called convergent, and 

the function f (x) itself is called integrable in the interval [–

∞; b]. If the boundary (5) is an eigenvalue or does not exist at 

all, then the integral ∫ 𝑓(𝑥)𝑑𝑥
𝑏

−∞
 is called divergent. The 

integral ∫ 𝑓(𝑥)𝑑𝑥
𝑏

−∞
 as well as the integral ∫ 𝑓(𝑥)𝑑𝑥

+∞

𝑎
 is 

called improper. 

If the function f (x) is defined on the interval [a; b], where 

a and b are arbitrary real numbers, then we can denote the 

integral from – ∞ to + ∞, namely, 

∫ 𝑓(𝑥)𝑑𝑥
+∞

−∞
= ∫ 𝑓(𝑥)𝑑𝑥

𝑐

−∞
+ ∫ 𝑓(𝑥)𝑑𝑥

+∞

𝑐
,        (6) 

where c is an arbitrary number. The integral ∫ 𝑓(𝑥)𝑑𝑥
+∞

−∞
 is 

called improper. In this case, if the integrals in the right-hand 

side of equation (6) coincide, then the improper integral 

∫ 𝑓(𝑥)𝑑𝑥
+∞

−∞
 is called convergent. If at least one of the 

integrals of the right-hand side of equation (6) diverges, then 

the improper integral ∫ 𝑓(𝑥)𝑑𝑥
+∞

−∞
 is called divergent. 

8. Double Integral and Conditions for Their Existence 

Let the function 𝑧 =  𝑓 (𝑥,  𝑦) be defined in a closed 

square bounded domain �̅� ⊂ 𝑅2. Divide the area �̅� by a grid 
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of curves into n arbitrary parts  �̅�𝑘, where 

k = 0, 1, 2, ... , n – 1, in pairs without common internal points 

so that �̅� = ⋃ �̅�𝑘
𝑛−1
𝑘=1 . Let's call this partition T partition of 

domain �̅�. The areas of the parts �̅�𝑘 are denoted by Δ Sk, 

where k = 0, 1, 2, ... , n – 1. In each part �̅�𝑘 we choose a point 

Pk (xk, yk), Pk ∈ �̅�𝑘, k = 0, 1, 2, ... , n – 1, and form the sum 

𝜎 = ∑ 𝑓(𝑥𝑘; 𝑦𝑘)Δ𝑆𝑘
𝑛−1
𝑘=0 .    (7) 

This sum is called the double integral sum for the function 

z = f (x, y) in the domain �̅�. 

Let 𝑑𝑘 = 𝑑𝑖𝑎𝑚�̅�𝑘, 𝑘 = 1,2, … , 𝑛 − 1, then 

𝜆(𝑇) = max
0≤𝑘≤𝑛−1

𝑑𝑘 

Definition 1. The number I is called the limit of integral 

sums σ for λ (T) → 0 if, for an arbitrary number ε > 0, there 

exists a number δ (ε) > 0  such that the inequality |σ – I| < ε is 

satisfied by an arbitrary T – partition of the domain �̅�, for 

which �̅� = ⋃ �̅�𝑘
𝑛−1
𝑘=1  and any choice of points Pk (xk, yk), 

where Pk ∈ �̅�𝑘 and k = 0, 1, 2, ... , n – 1 as soon as λ (T) < σ. 

Definition 2. If for λ (T) → 0 the integral sums σ have the 

boundary number I, then this number is called the double 

integral of the function  f (x; y) over the domain �̅� and is 

denoted by 
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∬ 𝑓(𝑥; 𝑦)𝑑𝑆  𝑜𝑟 ∬ 𝑓(𝑥; 𝑦)𝑑𝑥𝑑𝑦.    

Therefore, by definition, 

∬ 𝑓(𝑥; 𝑦)𝑑𝑥𝑑𝑦  = lim
𝜆(𝑇)→0

∑ 𝑓(𝑥𝑘; 𝑦𝑘)Δ𝑆𝑘
𝑛−1
𝑘=0 ,      (8) 

if the boundary (8) exists, i.e. there is a double integral of the 

function  f (x; y) over the domain �̅�, then the function f (x; y) 

is called integrable (according to Riemann) in the domain �̅�. 

9. Properties of Double Integrals 

1. If  f (x; y) = C, C – const, (x, y) ∈ �̅�, then 

∬ 𝐶𝑑𝑥𝑑𝑦  = 𝐶𝑆,    (9) 

where S is the area of the domain �̅�. 

2. If the functions f (x; y) and φ (x; y) are integrable on the 

domain �̅�, then the functions f (x; y) ± φ (x; y) are also 

integrable on this domain and the equality holds: 

∬ 𝑓 (𝑥;  𝑦) ± 𝜑 (𝑥;  𝑦)𝑑𝑥𝑑𝑦 = ∬ 𝑓 (𝑥;  𝑦)𝑑𝑥𝑑𝑦 ± 

± ∬ 𝜑 (𝑥;  𝑦)𝑑𝑥𝑑𝑦. 
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3. If the function f (x; y) is integrable on the domain �̅�, then 

the function C f (x; y) is also integrable on this domain, where 

C is const, and 

∬ 𝐶𝑓 (𝑥;  𝑦)𝑑𝑥𝑑𝑦 = 𝐶 ∬ 𝑓 (𝑥;  𝑦)𝑑𝑥𝑑𝑦. 

4. If f (x; y) ≥ 0, (x, y) ∈ �̅� and the function f (x; y) is 

integrable on the domain �̅�, then ∬ 𝑓 (𝑥;  𝑦)𝑑𝑥𝑑𝑦 ≥ 0. 

5. If f (x; y) ≥ φ (x; y), (x, y) ∈ �̅� and each of the functions 

f (x; y) and φ (x; y) is integrated in the domain �̅�, then 

∬ 𝑓 (𝑥;  𝑦)𝑑𝑥𝑑𝑦 ≥ ∬ 𝜑 (𝑥;  𝑦)𝑑𝑥𝑑𝑦. 

10. The Concept of Triple Integrals and Conditions for 

Their Existence 

Let the function 𝑢 =  𝑓 (𝑥,  𝑦, 𝑧) be defined in a closed 

square bounded domain �̅� ⊂ 𝑅3. Divide the domain �̅� by a 

grid of curves into n arbitrary parts  �̅�𝑘, where 

k = 0, 1, 2, ... , n – 1, in pairs without common internal points 

so that �̅� = ⋃ �̅�𝑘
𝑛−1
𝑘=1 . Let's call this partition T partition of 

domain �̅�. The areas of the parts �̅�𝑘 are denoted by Δ Vk, 

k = 0, 1, 2, ... , n – 1. In each region �̅�𝑘, we choose a point 

Pk (xk, yk, zk), where Vk ∈ �̅�𝑘 and k = 0, 1, 2, ... , n – 1, and 

form the sum 
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𝜎 = ∑ 𝑓(𝑥𝑘; 𝑦𝑘, 𝑧𝑘)Δ𝑉𝑘
𝑛−1
𝑘=0 .      (10) 

This sum is called the double integral sum for the function 

z = f (x, y, z) in the domain �̅�. 

Let 𝑑𝑘 = 𝑑𝑖𝑎𝑚�̅�𝑘, 𝑘 = 1,2, … , 𝑛 − 1. 

𝜆(𝑇) = max
0≤𝑘≤𝑛−1

𝑑𝑘. 

Definition 1. The number I is called the limit of integral 

sums σ for λ (T) → 0 if for an arbitrary number ε > 0, there 

exists a number δ (ε) > 0 such that the inequality |σ – I| < ε is 

satisfied by an arbitrary T  partition of the domain �̅�, 

�̅� = ⋃ �̅�𝑘
𝑛−1
𝑘=1  and any choice of points Pk (xk, yk, zyk), 

Pk ∈ �̅�𝑘, k = 0, 1, 2, ... , n – 1 as soon as λ (T) < σ. 

Definition 2. If for λ (T) → 0 the integral sums σ have the 

boundary number I, then this number is called the double 

integral of the function f (x; y) over the domain �̅� and is 

denote by 

∭ 𝑓(𝑥; 𝑦; 𝑧)𝑑𝑉 𝑜𝑟 ∭ 𝑓(𝑥; 𝑦; 𝑧)𝑑𝑥𝑑𝑦𝑑𝑧. 

Thus, by definition, 

∭ 𝑓(𝑥; 𝑦; 𝑧)𝑑𝑥𝑑𝑦𝑑𝑧 = lim
𝜆(𝑇)→0

∑ 𝑓(𝑥𝑘; 𝑦𝑘; 𝑧𝑘)Δ𝑉𝑘
𝑛−1
𝑘=0 ,  (11) 
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if the boundary (10) exists, i.e. there is a double integral of 

the function f (x; y; z) over the domain �̅�, then the function 

f (x; y; z) is called integrable (according to Riemann) on the 

domain �̅�: 

𝑚 = ∭ 𝛾𝑓(𝑥; 𝑦; 𝑧)𝑑𝑥𝑑𝑦𝑑𝑧.     (12) 

11. Properties of Triple Integrals 

If  f (x; y; z) = C, C – const, (x, y, z) ∈ �̅�, then 

∭ 𝐶𝑑𝑥𝑑𝑦𝑑𝑧 = 𝐶𝑉,     (13) 

where V is the area of the domain �̅�. For C = 1 and C = 0 from 

equation (13), in particular, we obtain ∭ 𝑑𝑥𝑑𝑦𝑑𝑧 = 𝑉 and 

∭ 0𝑑𝑥𝑑𝑦𝑑𝑧 = 0, respectively. 

2. If the functions f (x; y; z) and φ (x; y; z) are integrable on 

the domain �̅�, then the functions f (x; y; z) ± φ (x; y; z) are 

also integrable on this domain and the equality holds: 

∭ 𝑓(𝑥; 𝑦; 𝑧) ± 𝜑(𝑥; 𝑦; 𝑧)𝑑𝑥𝑑𝑦𝑑𝑧 = 

= ∭ 𝑓 (𝑥;  𝑦; 𝑧)𝑑𝑥𝑑𝑦𝑑𝑧 ± ∭ 𝜑 (𝑥;  𝑦)𝑑𝑥𝑑𝑦. 



23 

 

3. If the function  f (x; y; z) is integrable on the domain �̅�, 

then the function C f (x; y; z) is also integrable, on this 

domain where C is const, and 

∭ 𝐶𝑓 (𝑥;  𝑦; 𝑧)𝑑𝑥𝑑𝑦𝑑𝑧 = 𝐶 ∭ 𝑓 (𝑥;  𝑦; 𝑧)𝑑𝑥𝑑𝑦𝑑𝑧. 

4. If  f (x; y; z) ≥ 0, (x, y; z) ∈ �̅� and the function  f (x; y; z) is 

integrable on the domain �̅�, then ∭ 𝑓 (𝑥;  𝑦; 𝑧)𝑑𝑥𝑑𝑦𝑑𝑧 ≥ 0. 

5. If f (x; y; z) ≥ φ (x; y; z), (x, y, z) ∈ �̅� and each of the 

functions f (x; y; z) and φ (x; y; z) is integrable on the domain 

�̅�, then ∭ 𝑓 (𝑥;  𝑦; 𝑧)𝑑𝑥𝑑𝑦𝑑𝑧 ≥ ∭ 𝜑 (𝑥;  𝑦; 𝑧)𝑑𝑥𝑑𝑦𝑑𝑧. 
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NUMERICAL SERIES 
 

12. General Definitions of the Theory of Series 

Definition. Given is a sequence of numbers added 

together: 

𝑢1 + 𝑢2 + ⋯ + 𝑢𝑛 + ⋯.      (14) 

The numbers u1, u2, …, un, … are called the terms series. 

When the sequence are added together, the sum of the 

terms is called series. 

The sum of a finite number n of the first terms of the series 

is called the partial sum of the series and is denoted as 

follows: 

𝑆𝑛 = 𝑢1 + 𝑢2 + ⋯ + 𝑢𝑛.      (15) 

When n changes, so does Sn. 

Therefore, each series corresponds to a sequence of its 

partial sums S1, S2, S3… On the contrary, each sequence 

S1, S2, S3…, corresponds to a number: 

𝑆1 + (𝑆2 − 𝑆1) + (𝑆3 − 𝑆2) + ⋯ + (𝑆𝑛 − 𝑆𝑛−1) + ⋯. 

A series is said to be convergent if there is a finite 

boundary in the sequence of its partial sums lim
𝑛→∞

𝑆𝑛 = 𝑆. This 
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boundary S is called the sum of the series. A series is called 

divergent if such a boundary does not exist. 

Between the divergent series sometimes really diverging 

ones are distinguished, for which Sn → ∞, i.e. lim
𝑛→∞

1

𝑆𝑛
= 0. 

If the series coincides, then write:  

𝑢1 + 𝑢2 + ⋯ + 𝑢𝑛 + ⋯ + 𝑢𝑛+1 + ⋯ = 𝑆. 

If we separate from the convergent series n its first terms, 

i.e. Sn, then the set of other terms S – Sn = un+1 + un+2 + … =rn 

is called the remainder of the series. 

13. Progressions 

Arithmetic and geometric progressions are considered in 

elementary mathematics. 

Member terms of the arithmetic progression form a 

sequence: 

𝑎, 𝑎 + 𝑑, 𝑎 + 2𝑑, … , 𝑎 + (𝑛 − 1)𝑑, … 

If we connect the terms of this sequence with addition 

characters, we get a number: 

𝑎 + (𝑎 + 𝑑) + (𝑎 + 2𝑑) + ⋯ + [𝑎 + (𝑛 − 1)𝑑] + ⋯ 
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From elementary mathematics the formula for the partial 

sum of this series is known as: 

𝑆𝑛 =
𝑎+𝑎+(𝑛−1)𝑑

2
∙ 𝑛 = 𝑎𝑛 +

𝑛(𝑛−1)

2
𝑑. 

This part of the sum for n → ∞ itself goes to infinity. Thus, 

a series whose terms are members of an arithmetic 

progression is actually divergent. 

In elementary mathematics, as you know, only finite 

arithmetic progressions are considered. 

Now, consider now a geometric progression. Its terms also 

form a sequence: 

1, 𝑞, 𝑞2, … , 𝑞𝑛−1,… 

The terms of this sequence you can use to make a number: 

1 + 𝑞 + 𝑞2 + ⋯ + 𝑞𝑛−1 +… 

The partial sums of this series, as is known from 

elementary algebra, are written as follows: 

𝑆𝑛 =
𝑞𝑛−1

𝑞−1
, 𝑖𝑓 |𝑞| > 1. 

𝑆𝑛 =
1−𝑞𝑛

1−𝑞
, 𝑖𝑓 |𝑞| < 1. 

We see that for |q| > 1 this series is actually divergent, and 

for |q| < 1 the series is convergent, and it is reasonable to talk 



27 

 

about the sum of such a series. In the latter case, you can 

write: 

1

1−𝑞
= 1 + 𝑞 + 𝑞2 + ⋯ + 𝑞𝑛−1 +… 

for lim
𝑛→𝑥

𝑆𝑛 = lim
𝑛→𝑥

1−𝑞𝑛

1−𝑞
= lim

𝑛→𝑥
(

1

1−𝑞
−

𝑞𝑛

1−𝑞
) =

1

1−𝑞
−

lim
𝑛→𝑥

𝑞𝑛

1−𝑞
=

=
1

1−𝑞
= 𝑆. 

If q = 1, then Sn = n and the series are actually divergent. 

If q = –1, then Sn = 1 – 1 + 1 – 1 +…+ (–1)n–1 and for odd 

number n Sn = 0, and for even number n Sn = 1. Hence we see 

that there is no boundary lim
𝑛→∞

𝑆𝑛. 

We see that geometric progression gives us samples of all 

types of series: 

a) actually divergent for |q| > 1and q = 1; 

b) divergent when q = –1 and 

c) convergent when |q| < 1. 

14. The Problem of Studying the Internal Convergence of 

a Series 

In the theory of series, one of the main problems is the 

following: 1) establishing the very fact of convergency or 

divergency of the series under study and 2) establishing the 
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amount of convergent series. It should be noted that the 

solution of both problems (especially of the second one) is 

very often reduced to a direct study of the process of changing 

partial sums of the series Sn for n → ∞. 

In the general case, finding the partial sums of the series 

Sn to determine the convergence or divergence of a given 

series is associated with significant difficulties, so we resort 

to other tests for convergence or divergence of the series, 

which we will prove below. 

Next, we should focus on an important property of the 

series, namely: 

Theorem 1. If the series obtained from the given series 

converges  

∑ 𝑢𝑛
∞
𝑛=1 = 𝑢1 + 𝑢2 + ⋯ + 𝑎𝑛 + ⋯      (16) 

After discording some of its terms, then another side of the 

series (16) wice also converge. If this series coincides, then 

the series obtained by discarding some of the terms will also 

converge. Consequently, the convergence or divergence of 

the series is not violated if a certain finite number of terms of 

the series are discarded. 

Here are two more simple properties of the series. 

Theorem 2. If the series 
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∑ 𝑎𝑛
∞
𝑛=1 = 𝑎1 + 𝑎2 + ⋯ + 𝑎𝑛 + ⋯   (17) 

converges and its sum is equal to S, then the series 

∑ 𝑐𝑎𝑛
∞
𝑛=1 = 𝑐𝑎1 + 𝑐𝑎2 + ⋯ + 𝑐𝑎𝑛 + ⋯   (18) 

where c is an arbitrary fixed number, will also converge and 

its sum will be equal to cS. 

Theorem 3. If the series 

∑ 𝑎𝑛
∞
𝑛=1 = 𝑎1 + 𝑎2 + ⋯ + 𝑎𝑛 + ⋯    (19) 

∑ 𝑏𝑛
∞
𝑛=1 = 𝑏1 + 𝑏2 + ⋯ + 𝑏𝑛 + ⋯    (20) 

converge, and their sums are 𝑆′ and 𝑆′′, respectively, then the 

series 

∑ (𝑎𝑛 + 𝑏𝑛)∞
𝑛=1 = (𝑎1 + 𝑏1) + (𝑎2 + 𝑏2) + ⋯ + (𝑎𝑛 + 𝑏𝑛) + ⋯

 (21) 

and 

∑ (𝑎𝑛 − 𝑏𝑛)∞
𝑛=1 = (𝑎1 − 𝑏1) + (𝑎2 − 𝑏2) + ⋯ + (𝑎𝑛 − 𝑏𝑛) + ⋯

 (22) 

also converge and their sums are equal 𝑆′ + 𝑆′′ and 𝑆′ − 𝑆′′ 

respectively. 

15.   Tests for the Convergence of a Series 

Let us consider several main necessary criteria for the 

convergence of a series. 
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Theorem. If the series 

∑ 𝑢𝑛

∞

𝑛=1

= 𝑢1 + 𝑢2 + ⋯ + 𝑢𝑛 + ⋯ 

converges, then 

lim
𝑛→∞

𝑢𝑛 = 0      (23) 

If lim
𝑛→∞

𝑢𝑛 ≠ 0, then this series is probably divergent. 

16. D'Alembert Ratio Test (for the Convergence of a 

Series) 

Theorem. If in the series with positive terms the ratio of 

the next term to the previous 
𝑢𝑛+1

𝑢𝑛
 starting from a certain value 

n = n0 satisfies the inequality 
𝑢𝑛+1

𝑢𝑛
< 𝑞, where the number q 

is constant and less than one, then the series probably 

converge. When, on the contrary, starting from a certain value 

n = n0, we have 
𝑢𝑛+1

𝑢𝑛
≥ 1, then this series probably diverges. 

Conclusion. If there is lim
𝑛→∞

𝑢𝑛+1

𝑢𝑛
= 𝑙, then for l < 1 the 

series probably converges and for l > 1 the series probably 

diverges. In the case of l = 1, nothing definite can be said 
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about the convergence or divergence of the series. This is a 

dubious case. 

17. The Cauchy test (for the Convergence of a Series) 

Theorem. If in a series with positive terms the common 

term, beginning with a certain value n, satisfies the inequality 

√𝑢𝑛
𝑛 < 𝑞, where the number q is a constant and less than one, 

then the series converges. 

When, on the contrary, starting from a certain value n, we 

have √𝑢𝑛
𝑛 ≥ 1, then the series diverges. 

Conclusion. If there is lim
𝑛→∞

√𝑢𝑛
𝑛 = 𝑙, then at l < 1 the 

series probably converges, and at l > 1 the series probably 

diverges. The case l = 1 is doubtful here as well. 

A more detailed analysis generally makes it easy to 

establish the fact that Cauchy test (criterion) is relatively 

“stronger” than D'Alembert ratio test, i.e. in all cases of 

applicability of D'Alembert test, Cauchy test is also 

applicable, but not vice versa. 

In cases where D'Alembert ratio test is applicable, it is 

mostly advantageous in that it is simpler than Cauchy test, 
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because the expression 
𝑢𝑛+1

𝑢𝑛
 is often much simpler than the 

expression √𝑢𝑛
𝑛

. 

18. The Integral Test for Convergence and Divergence of 

Series 

Let us make some preliminary remarks on improper 

integrals with a positive integrant function. 

Considering the improper integral ∫ 𝑓 (𝑥) 𝑑𝑥
∞

𝑎
, where 

f (x) > 0, we have, like in case of a series with positive terms, 

only two such possibilities: either the monotonically 

increasing value of the integral 𝐼(𝑏) = ∫ 𝑓 (𝑥) 𝑑𝑥
𝑏

𝑎
 remains 

limited at b → +∞, then it has some finite boundary: 

lim
𝑏→∞

∫ 𝑓 (𝑥) 𝑑𝑥
𝑏

𝑎

= ∫ 𝑓 (𝑥) 𝑑𝑥
∞

𝑎

 

or I (b) → ∞ for b → ∞, and then the improper integral 

∫ 𝑓 (𝑥) 𝑑𝑥
∞

𝑎
 does not exist, turning into infinity. 

Theorem. If the function f (x) is positive and 

monotonically decreasing at x ≥ a and goes to zero at 

x → +∞, then the series 

𝑓(𝑎) + 𝑓(𝑎 + 1) + 𝑓(𝑎 + 2) + ⋯ + 𝑓(𝑎 + 𝑛 − 1) + 
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+𝑓(𝑎 + 𝑛) + 𝑓(𝑎 + 𝑛 + 1) + ⋯ 

converges if ∫ 𝑓 (𝑥) 𝑑𝑥
∞

𝑎
 exists, and diverges if this integral 

becomes infinity. 

19. Alternating Series. The Convergence Test of Leibniz. 

Estimation of the remainder 

Definition. Alternating series are called infinite series of 

the form 

𝑎1 − 𝑎2 + 𝑎3 − 𝑎4 + 𝑎5 − 𝑎6 + ⋯ + 𝑎𝑛(−1)𝑛−1 + ⋯, 

where a1, a2, a3… is a sequence of positive non-negative 

numbers. 

Leibniz's theorem. If in the alternating series the absolute 

values of the common terms monotonically decrease to zero 

(i.e. 0 < a1 > a2 > a3 > …, moreover an = 0 when n → ∞), 

then the series converges, and its sum has a numerical value, 

intermediate between zero and the first term (0 <S <a1). 

Conclusion. By Leibniz's theorem, the remainder 

S – Sn = rn is smaller in absolute value than the first ommited 

term |rn| < an+1 and has the same sign as this term. 
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20. Absolutely and Conditionally Convergent Series 

Often the question of the convergence of a series whose 

members are positive and negative (such series are called 

alternating series), can be reduced to the question of the 

convergence of the positive series. Consider the following 

theorem: 

Theorem. If a series |u1| + |u2| + … + |un|+ …converges, 

then the series u1 + u2 + … + un + … must also converge. 

Definition. The convergent series u1 + u2 + … + un + … is 

called absolutely convergent if the series 

|u1| + |u2| + … + |un|+ … also converges. 

Definition. A series 

u1 + u2 + … + un + …converges conditionally 

if it converges, but 

|u1| + |u2| + … + |un|+ … diverges. 

We mentioned above that the notion of an absolutely 

convergent series makes it possible in some cases to 

determine the convergence of a series (if this series is 

absolutely convergent). But the meaning of this concept is far 

more important. The fact is that some properties of absolutely 

convergent series do not coincide with the corresponding 

properties of conditionally convergent series (which we will 



35 

 

see below). Therefore quite often it is necessary to establish 

the fact of absolute or conditional convergence of a number 

even in the case when its convergence is already known to us. 

Theorem. The sum of an absolutely convergent series 

remains unchanged at any permutation of its members. 

Riemann's theorem. If a series coincides conditionally, 

then its members can be rearranged so that the newly formed 

series has any predetermined sum, or becomes divergent. 
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POWER SERIES 
 

21. Radius and Interval of Convergence for a Series 

A power series is a series of the form 

𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ + 𝑎𝑛𝑥𝑛 = ∑ 𝑎𝑛𝑥𝑛∞
𝑛=0 ,   (24) 

where x is a variable and a0, a1, a2, ..., an, ...  are real numbers, 

called the coefficients of the series. The first thing to notice 

about a power series is that it is a function of x. 

Power series are widely used in approximate calculations, 

which we will consider later. First of all, let us introduce the 

basic concepts concerning power series. 

The power series (24) is convergent at the point x = 0, 

because at x = 0 it becomes a convergent numerical series 

𝑎0 + 𝑎10 + 𝑎20 + ⋯ + 𝑎𝑛0 = 𝑎0 

The region of convergence of a power series can be found 

in the same way as it was done for functional series. 

The following theorem makes it possible to determine the 

interval of convergence for a power series. 

Abel's theorem. If the power series (24) 

∑ 𝑎𝑛𝑥𝑛

∞

𝑛=0
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convergent for x = x0 ≠ 0, then it is absolutely convergent for 

all values of x that satisfy the inequality |x| < |x0|. 

If for x = x0 the power series is convergent, then it is 

divergent for all values of x for which |x| > |x0|. 

Definition. The interval of convergence of the power series 

∑ 𝑎𝑛𝑥𝑛∞
𝑛=0  is such an interval (– R; R) that for each point x, 

which lies within this interval, the series converges 

absolutely, and for points x, which are outside this interval, 

the series diverges. The number R is called the radius of 

convergence of the power series. 

The question of the convergence of a series at x = ± R (at 

the endpoints of the interval) is solved for each series 

separately. Thus, the region of convergence of a power series 

may differ from its interval of convergence by no more than 

two points, which are the endpoints of the interval of 

convergence. 

If the power series diverges everywhere except the point 

x = 0, then R = 0, and if the power series converges 

everywhere, then R = +∞ and the interval of convergence of 

such a series is the whole numerical line – (–∞; +∞). 
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22. Properties of Power Series 

Theorem 1: about uniform convergence of power series 

segment.  

The power series is uniformly convergent on each segment 

belonging to its interval of convergence. 

Conclusion. The sum of a power series is continuous in the 

interval of its convergence. 

Theorem 2: about the term wise differentiation of a power 

series. 

 If the power series (24) ∑ 𝑎𝑛𝑥𝑛∞
𝑛=0  has the interval of 

convergence (– R; R), then the series 

∑ 𝑛𝑎𝑛𝑥𝑛−1∞
𝑛=0 ,      (25) 

formed by the member differentiation of the series (24), has 

the same interval of convergence (– R; R). If f (x) is the sum 

of the series (24) and φ (x) is the sum of the series (25), then 

𝜑(𝑥) = 𝑓(𝑥), 𝑥 ∈ (−𝑅; 𝑅).      (26) 

Conclusion. The sum of the power series has derivatives 

of any order in the middle of the interval of convergence. 

Theorem 3: about the term wise integration of a power 

series. 
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 The power series can be articulated on each segment 

belonging to its interval of convergence. 

23. Taylor's Series 

It is known that the sum of a power series in the interval 

of its convergence is a continuous function differentiated an 

infinite number of times. Let us now consider under what 

conditions the given function f (x) is the sum of the power 

series. Note that the problem of representing the function in 

the form of the power series is important because it is possible 

to approximate the function with the required accuracy by 

partial sums of the power series, which are polynomials. Then 

the calculation of the values of the function is reduced to the 

calculation of the values of the polynomial, i.e. to perform 

only the simplest arithmetic operations. Representation of the 

function in the form of the power series is used not only in 

calculating the values of the function but also in calculating 

integrals, solving equations, and so on. 

Let the function f (x) be defined around the point a and at 

this point have derivatives of any order. Assume that the 

function f (x) can be represented as a power series in the 

interval (a – R; a + R): 
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𝑓(𝑥) = 𝑎0 + 𝑎1(𝑥 − 𝑎) + 𝑎2(𝑥 − 𝑎)2 + ⋯ + 𝑎𝑛(𝑥 − 𝑎)𝑛 + ⋯.

 (27) 

Express the coefficients a0, a1, …, an, … of the series (27) 

in terms of the values of the function f (x) and its derivatives 

at the point a. 

For x = a from equation (27), we have a0 = f (a). 

According to the differentiation theorem for power series, 

𝑓′(𝑥) = 𝑎1 + 2𝑎2(𝑥 − 𝑎) + ⋯ + 𝑛𝑎𝑛(𝑥 − 𝑎)𝑛−1 + ⋯ 

𝑥 ∈ (𝑎 − 𝑅; 𝑎 + 𝑅). (28) 

In other words, if f has a power series expansion at a, then 

it must be of the form 

∑
𝑓𝑛(𝑎)

𝑛!
∞
𝑛=0  (𝑥 − 𝑎)𝑛. (29) 

This series is called the Taylor series of function f (x) about a 

(or centered at a). 

Theorem 1. If the function f (x) in the interval 

(a – R; a + R) can be represented as the power series 

∑ 𝑎𝑛(𝑥 − 𝑎)𝑛∞
𝑛=0 , then this series is unique and it is a Taylor 

series of this function. 

Theorem 2. For the Taylor series (29) to match the 

function  f (x) in the interval (a – R; a + R), i.e. to hold 
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𝑓(𝑥) = ∑
𝑓𝑛(𝑎)

𝑛!
∞
𝑛=0  (𝑥 − 𝑎)𝑛, 𝑥 ∈ (𝑎 –  𝑅;  𝑎 +  𝑅, it is 

necessary and sufficient that in this interval the function f (x) 

has derivatives of all orders and that the remainder of its 

Taylor formula goes to zero at n → ∞ for all x in this interval. 

Theorem 3. If the function  f (x) has derivatives of all 

orders the interval (a – R; a + R) and there is such M > 0 that 

|𝑓𝑛(𝑥)| ≤ 𝑀, 𝑤ℎ𝑒𝑟𝑒 𝑛 = 0,1,2, …  𝑎𝑛𝑑 𝑥 ∈ (𝑎 –  𝑅;  𝑎 +  𝑅),

 (30) 

then the function f (x) can be represented as a Taylor series in 

this interval: 

𝑓(𝑥) = ∑
𝑓𝑛(𝑎)

𝑛!
∞
𝑛=0  (𝑥 − 𝑎)𝑛, 𝑥 ∈ (𝑎 –  𝑅;  𝑎 +  𝑅).  

24. Taylor Series for Elementary Functions 

Consider the expansion of elementary functions into a 

power series over powers of x, which can be obtained from 

the series (29) for a = 0: 

𝑓(𝑥) = 𝑎(0) +
𝑓′(0)

1!
𝑥 +

𝑓′′(0)

2!
𝑥2 + ⋯

𝑓(𝑛)(0)

𝑛!
𝑥𝑛 , 𝑥 ∈ (– 𝑅; +𝑅).   

 (31) 

The series (31) is also called the Maclaurin series. 

1. 𝑓(𝑥) = 𝑠𝑖𝑛𝑥. 
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𝑠𝑖𝑛𝑥 = 𝑥 −
𝑥3

3!
+

𝑥5

5!
− ⋯ +

(−1)𝑛𝑥2𝑏+1

(2𝑛 + 1)!
+ ⋯ = ∑

(−1)𝑛𝑥2𝑛+1

(2𝑛 + 1)!

∞

𝑛=0

, 

 𝑥 ∈ (– ∞; +∞).  (32) 

2. 𝑓(𝑥) = 𝑐𝑜𝑠𝑥. 

𝑐𝑜𝑠𝑥 = 𝑥 −
𝑥2

2!
+

𝑥4

4!
− ⋯ +

(−1)𝑛𝑥2𝑏+1

(2𝑛)!
+ ⋯ = ∑

(−1)𝑛𝑥2𝑛

(2𝑛)!

∞

𝑛=0

, 

 𝑥 ∈ (– ∞; +∞).    (33) 

It is interesting to note that the odd function sin x is 

expanded into a power series by odd powers of x, and the even 

function cosx is expanded by even powers of x. 

3. 𝑓(𝑥) = 𝑒𝑥. 

𝑒𝑥 = 1 +
𝑥2

2!
+ ⋯ +

𝑥𝑛

𝑛!
+ ⋯ = ∑

𝑥𝑛

𝑛!

∞
𝑛=∞ , 𝑥 ∈ (– ∞; +∞). 

4. 𝑓(𝑥) = ln(1 + 𝑥). 

ln(1 + 𝑥) = 𝑥 −
𝑥2

2
+

𝑥3

3
… + (−1)𝑛 𝑥𝑛

𝑛
+ ⋯ = ∑ (−1)𝑛−1 𝑥𝑛

𝑛

∞
𝑚=1 ,  

𝑥 ∈ (– 1; +1).   (34) 

5. 𝑓(𝑥) = (1 + 𝑥)𝑎, where a is a real number. 

(1 + 𝑥)𝛼1 +
𝛼

1!
𝑥 +

𝛼(𝛼 − 1)

2!
𝑥2 + ⋯ + 

+
𝛼(𝛼 − 1)(𝛼 − 2) … (𝛼 − 𝑛 + 1)

𝑛!
𝑥𝑛 + 

+ ⋯ = ∑
𝛼(𝛼−1)(𝛼−2)…(𝛼−𝑛+1)

𝑛!
𝑥𝑛,∞

𝑛=0   𝑥 ∈ (– 1; +1).    (35) 
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If a = m, where m is a natural number, then the function 

(1 + x)m is a polynomial degree m and therefore all 

derivatives, starting from (m+1)th derivatives, are equal to 

zero, when turning to zero and the corresponding coefficients 

of the series (35). From equation (35) we obtain the known 

expansion of the binomial (1 + x)m, which is called the 

Newtons binomial: 

(1 + 𝑥)𝑚 = 1 + 𝑚𝑥 +
𝑚(𝑚 − 1)

2!
𝑥2 + ⋯ + 𝑥𝑚. 

The resulting power series can be used when finding 

power series for other functions. 
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FOURIER SERIES 
 

25. Fluctuations and Periodic Processes. Periodic 

Functions 

Processes repeated at certain intervals are common in 

nature and technology. Such processes are called periodic. 

Such, for example, are the oscillatory and rotational motions 

of various parts of machines and devices, movements of 

celestial bodies and elementary particles, acoustic and 

electromagnetic oscillations, and so on. 

Periodic processes are modeled using periodic functions. 

The function y = f (x) is said to be periodic with a period T > 0 

if it is defined on the whole numerical axis and the equality 

f (x + T) = f(x), 𝑥 ∈ 𝑅 holds for it. 

Simplest harmonic motion is oscillatory motion of a 

material particle, which is described by a function 

𝑦(𝑥) = 𝑎sin(𝑘𝑥 + 𝑥0) , 𝑥 ≥ 0,  

where a is the amplitude of oscillation; k is the cyclic 

frequency; and x0 – initial phase. 

The function y (x) (and its graph) is said to be simple 

harmonic. By superimposing simple harmonic motion, you 

can get a variety of periodic oscillations. 
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Naturally, the inverse problem arises of the possibility of 

representing a periodic motion given by some periodic 

function as a sum of simple harmonic motion. It turned out 

that this, cannot be done if we limit ourselves to a finite sum 

of simple harmonic motion. If we enter infinite sums of 

simple harmonic motion, then almost every periodic function 

can be decomposed into simple harmonic motion. 

Let  f (x) be a 2π periodic function. We must represent this 

function through the sum of the form 

𝑎0

2
+ 𝑎1 cos 𝑥 + 𝑏1 sin 𝑥 + 𝑎2 cos 2𝑥 + 𝑏2 sin 2𝑥 + ⋯ +

+𝑎𝑛 cos 𝑛𝑥 + 𝑏𝑛 sin 𝑛𝑥 + ⋯ =
𝑎0

2
+ ∑ 𝑎𝑛 cos 𝑛𝑥 +∞

𝑛=1

+𝑏𝑛 sin 𝑛𝑥 ,  

where a0, a1, b1, …, an, bn, … – some steels. The free 

member is taken in the form of  
𝑎0

2
  for convenience. 

The resulting series is called trigonometric and real 

numbers a0, an, bn, (n = 1, 2, …) – its coefficients. 

26. Fourier Series of a Triangle Functions 

Let y = f (x) – 2π be a periodic function, integrated on the 

interval [– π, π]. Consider the functions of the sequence 

1, cos x, sin x, cos 2x, sin 2x, …, cos nx, sin nx, … 
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Theorem. Trigonometric system of functions 1, cos x, 

sin x, …, cos nx, sin nx, … is orthogonal on the segment 

[– π, π]. 

Definition. A trigonometric series, the coefficients of 

which are the Fourier coefficients of the function f (x), is 

called the Fourier series of this function and is written as 

𝑓(𝑥)~
𝑎0

2
+ ∑ 𝑎𝑛 cos 𝑛𝑥 + +𝑏𝑛 sin 𝑛𝑥 = 𝑆(𝑥) .

∞

𝑛=1

 

The symbol for correspondence “~” means that the Fourier 

series integrated on the segment [– π, π] of the function f (x) 

is aligned. 

Numbers a0, an and bn, which are determined by formulas 

𝑎0 =
1

𝜋
∫ 𝑓(𝑥)𝑑𝑥,   

𝜋

−𝜋

𝑎𝑛 =
1

𝜋
∫ 𝑓(𝑥) cos 𝑛𝑥 𝑑𝑥,   

𝜋

−𝜋

 

𝑏𝑛 =
1

𝜋
∫ 𝑓(𝑥) sin 𝑛𝑥 𝑑𝑥,   𝑛 = 1,2, … ,

𝜋

−𝜋

 

are called Fourier coefficients of the function  f (x). 

Lipschitz's theorem (sufficient conditions for the Fourier 

series representation of a function). If the function f (x) – 2 π 

is a periodic and piecewise-differentiated function on the 

interval [– π, π], then the Fourier series of this function is 

convergent on the segment [– π, π] to the function S (x), and 
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a) S (x) = f (x) – at the points of continuity of the function 

f (x); 

b) 𝑆(𝑥0) =
𝑓(𝑥0−0)+𝑓(𝑥0+0)

2
 – at the point x0 of the rupture of 

the function; 

c) 𝑆(−𝜋) = 𝑆(𝜋)
𝑓(−𝜋+0)+𝑓(𝜋+0)

2
 – at the ends of the 

segment. 

27. Fourier Series for Even and Odd Functions 

Let the function  f (x) be given on the interval [– π, π] next 

to Fourier. We show that the calculation of the coefficients of 

this series is simplified if the function  f (x) is either even or 

odd. 

Suppose, for example, that f (x) is even on the interval 

[– π, π], then  f (x) sin nx (n = 1, 2, ...) is odd, and  

f (x) cos nx, n = 0, 1, 2, ... – even functions on this segment.  

So, 

𝑏𝑛 =
1

𝜋
∫ 𝑓(𝑥) sin 𝑛𝑥 𝑑𝑥 = 0,

𝜋

−𝜋

 

𝑎0 =
1

𝜋
∫ 𝑓(𝑥)𝑑𝑥 =

2

𝜋
∫ 𝑓(𝑥)𝑑𝑥

𝜋

0

,   
𝜋

−𝜋

 

𝑎𝑛 =
2

𝜋
∫ 𝑓(𝑥) cos 𝑛𝑥 𝑑𝑥, 𝑛 = 1, 2, … 

𝜋

0
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by the properties of definite integrals. 

Thus, the Fourier series will have the form 

𝑓(𝑥) =
𝑎0

2
∑ 𝑎𝑛 cos 𝑛𝑥.

∞

𝑛=1

 

Similarly, if the function  f (x) is odd, then its Fourier series 

has the form 

𝑓(𝑥) = ∑ 𝑏𝑛 sin 𝑛𝑥∞
𝑛=1 , 

where 

𝑏𝑛 =
2

𝜋
∫ 𝑓(𝑥) sin 𝑛𝑥 𝑑𝑥.

𝜋

0

 

Note that the Fourier series reflects the nature of the 

function. An even function is decomposed by cosines (even 

functions), and an odd function is decomposed by sines (odd 

functions). 
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